AGRICULTURAL AND FOOD CHEMISTRY

Simultaneous Determination of All Polyphenols in Vegetables, Fruits, and Teas

Hiroyuki Sakakibara, Yoshinori Honda, Satoshi Nakagawa, Hitoshi Ashida, and Kazuki Kanazawa*

Department of Life Science, Graduate School of Science and Technology, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan

Polyphenols, which have beneficial effects on health and occur ubiquitously in plant foods, are extremely diverse. We developed a method for simultaneously determining all the polyphenols in foodstuffs, using HPLC and a photodiode array to construct a library comprising retention times, spectra of aglycons, and respective calibration curves for 100 standard chemicals. The food was homogenized in liquid nitrogen, lyophilized, extracted with 90% methanol, and subjected to HPLC without hydrolysis. The recovery was 68–92%, and the variation in reproducibility ranged between 1 and 9%. The HPLC eluted polyphenols with good resolution within 95 min in the following order: simple polyphenols, catechins, anthocyanins, glycosides of flavones, flavonols, isoflavones and flavanones, their aglycons, anthraquinones, chalcones, and theaflavins. All the polyphenols in 63 vegetables, fruits, and teas were then examined in terms of content and class. The present method offers accuracy by avoiding the decomposition of polyphenols during hydrolysis, the ability to determine aglycons separately from glycosides, and information on simple polyphenol levels simultaneously.

KEYWORDS: Polyphenol determination; flavonoids; anthocyanins; catechins; vegetables; fruits; teas

INTRODUCTION

Polyphenols in vegetables, fruits, and teas can prevent degenerative diseases including cancers through antioxidative action and/or the modulation of several protein functions. For example, the intake of antioxidative polyphenols reduces coronary heart disease mortality (1) by suppressing the oxidation of low-density lipoprotein (2). Polyphenols exhibit agonism and/ or antagonism of carcinogenesis-related receptors such as epidermal growth factor (3), arylhydrocarbon receptor (4), and estrogen receptor β (5). They modulate the secretion of cytokines, regulating the cell cycle (6-9) and expression of protein kinases in tumor cell proliferation (10, 11). They induce the expression of anticarcinogenic enzymes (12) or inhibit induction of cancer-promoting enzymes (13-15). In animal experiments, an oral dose of polyphenols suppressed the carcinogenesis of several carcinogens (16-20). Polyphenols also show actions for vasorelaxation (21, 22) and antiallergy (23).

It is important to determine the amounts and species of polyphenols in vegetables, fruits, and teas. The number of natural polyphenols has been estimated to be over one million, because they generally occur as glycosides, and the sugar species and binding forms show great variety (24, 25). However, the bioactivity is attributed to aglycon structures, not to sugar moieties. The antioxidative potency is due mainly to the orthodiol (catechol) structure in aglycons (26, 27). The specificity

* To whom correspondence should be addressed (telephone and fax +81-78-803-5879; E-mail kazuki@kobe-u.ac.jp).

of interaction with proteins depends on the steric structures of respective aglycons, with the sugar moieties disrupting the interaction (4, 28-30). Therefore, a better understanding of the species and levels of aglycons is needed. Species of aglycon are not so diverse, numbering around a few hundred in food polyphenols.

Aglycons of polyphenols can be classified into polycyclic types such as flavonoids, anthraquinones and others, and simple polyphenols. Flavonoids are a large class constructed basically with A and C rings of benzo-1-pyran-4-quinone and a B ring, and further subclassified as flavones (basic structure), flavonols (having a hydroxyl group at the 3-position), isoflavones (B ring binds to the 3-position), flavanones (2-3 bond is saturated), and catechins (C-ring is 1-pyran), chalcones (C-ring is opened), and anthocyanidins (C-ring is 1-pyran, and 1-2 and 3-4 bonds are unsaturated). They generally have a variety of substitutions involving hydroxyl and/or methoxyl groups. Anthraquinones are known to comprise around 20 species, such as alizarin, rhein, and emodin (31). The other polycyclic types are caffeine, sesamol, ellagic acid, and so on. Simple polyphenols include two subclasses, cinnamic acids, such as coumaric acid, ferulic acid, and caffeic acid, and benzoic acids, such as protocatechuic acid, gallic acid, and vanillic acid.

Several groups have proposed methods for identifying aglycons by high-performance liquid chromatography (HPLC) with a photodiode array detector (32-35). These methods had not been able to cover all polyphenols, however, because they targeted only a part of the flavonoids. Further, they required

Table 1. A Library of the Analytical Characteristics of Polyphenols

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					calibration	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	polyphenols	λ_{\max} (nm)	$t_{\rm R}^a$ (min)	determining ^b (nm)	slope ^c (×10 ⁻⁴)	limit ^d (pmol)
$ \begin{array}{c} \begin{split} & \begin{array}{c} \displaystyle \displaystyle \underset{\substack{a \in [a \in [a], \\ a \in [a], \\ a \in [a], \\ a \in [a], \\ \hline \mbox{ Horizontal}, \mbox{ tail} (0,04) \\ print a (0,04) \\ print a$		Simple	Polyphenols			
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $		СООН		3		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				2 4		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$5\left(\begin{array}{c}2\\3\end{array}\right)^{2}$	HOOC	5		
$ \begin{array}{c} \mbox{box} \mbox{carbo} \mbox{carbo} \mbox} \mbox{carbo} \mbox} \mbox{carbo} \mbox} \$		4		6		
$ \begin{array}{c} o pdy opt opt cald (2016) \\ pdy fopt opt cald (2016) \\ pdy fopt cald (2416) \\ pdy fopt cald (2416) \\ pdy cald (2416$	benzoic acids					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>o</i> -hydroxybenzoic acid (2-OH)	273, 321	34.3	250	59.7	190
	<i>p</i> -hydroxybenzoic acid (3-OH)	234, 293 211sh, 253	13.8	250	3.87	46
$\begin{array}{c} prescriptic and (2.401) & 20, 291 & 10.9 & 250 & 8.48 & 00 \\ vanitic and (4.14, 30, Ch) & 20, 291 & 10.9 & 250 & 5.44 & 50 \\ recumunic and (2.01) & 213, 236, 275, 235, 376 & 21.9 & 300 & 9.49 & 54 \\ promunic and (3.01) & 2134, 2378, 275, 235, 320 & 2.48 & 300 & 9.49 & 54 \\ promunic and (3.01) & 2134, 2378, 252, 2358, 370 & 23.3 & 200 & 2.60 & 22 \\ caffer and (3.4, 01) & 2134, 2378, 275, 375, 114 & 320 & 2.07 & 38 \\ changene and (4.01) & 2134, 2378, 248, 2491, 300 & 249 & 35 \\ recomment and (4.01) & 2134, 248, 1291, 325 & 263 & 320 & 2.69 & 31 \\ recomment and (4.01) & 213, 2386, 24918, 325 & 263 & 320 & 2.69 & 31 \\ recomment and (4.01) & 2134, 2481, 2491, 325 & 263 & 320 & 2.69 & 31 \\ recomment and (4.01) & 2134, 2481, 2491, 325 & 263 & 320 & 2.69 & 31 \\ recomment and (4.01) & 2134, 2481, 2491, 325 & 263 & 320 & 2.69 & 31 \\ recomment and (4.01) & 2134, 2481, 2491, 325 & 263 & 320 & 2.69 & 31 \\ recomment and (4.01) & 2134, 274, 29386, 29186, 325 & 263 & 320 & 2.69 & 31 \\ recomment and (4.01) & 2334, 274, 32886, 29186, 325 & 263 & 320 & 2.69 & 31 \\ recomment and (4.01) & 2334, 274, 311 & 300 & 2.78 & 40 & 20 \\ recomment and (4.01) & 2334, 274, 311 & 300 & 2.78 & 40 & 20 \\ recomment and (4.01) & 2334, 274, 311 & 300 & 2.78 & 40 & 20 \\ recomment and (4.01) & 2334, 274, 313 & 90.3 & 320 & 4.64 & 20 \\ recomment and (4.01) & 25348, 374, 313 & 90.3 & 320 & 4.64 & 20 \\ recomment and (4.01) & 25348, 374, 313 & 90.3 & 320 & 4.64 & 20 \\ recomment (5.7, 6.01) & 253, 2534, 3074, 314 & 300 & 2.44 & 42 \\ recomment (5.7, 6.01) & 253, 253, 335 & 50.1 & 320 & 1.44 & 42 \\ recomment (5.7, 6.01) & 253, 323 & 50.7 & 320 & 1.44 & 42 \\ recomment (5.7, 6.01) & 253, 253, 334 & 50.7 & 320 & 1.47 & 42 \\ recomment (5.7, 6.01) & 254, 2748, 334 & 31.7 & 20 & 1.48 & 42 \\ recomment (5.7, 7.01) & 254, 2748, 334 & 31.7 & 20 & 1.48 & 42 \\ recomment (5.7, 7.01) & 254, 2748, 334 & 31.7 & 20 & 234 & 42 \\ recomment (5.7, 7.01) & 254, 2748, 334 & 31.7 & 300 & 246 & 42 \\ recomment (5.7, 7.01) & 254, 7.44 & 314 & 320 & 2.43 & 32 \\ recomment (5.7, 7$	protocatechuic acid (3,4-OH)	257, 291	9.7	250	4.77	56
$ \begin{array}{c} galar (a add (A, S-Or)) & 20 & 5.8 & 250 & 17.0 & 74 \\ \hline commit a add (2, Of) & 213h, 225h, 276 & 21.9 & 320 & 4.36 & 38 \\ \hline commit a add (2, Of) & 213h, 213h, 255, 206 & 21.9 & 320 & 2.38 & 22 \\ \hline commit a add (4, Of) & 213h, 213h, 255, 206 & 1.1 & 30 & 2.38 & 22 \\ \hline commit a add (4, Of) & 213h, 213h, 255, 205 & 1.1 & 1.1 & 30 & 2.0 & 2.38 & 22 \\ \hline commit a add (4, Of) & 213h, 213h, 255, 205 & 2.58 & 320 & 2.69 & 33 \\ \hline commit a add (4, Of) & 213h, 213h, 295h, 291 & 1.54 & 300 & 2.69 & 33 \\ \hline commot a add (2, OH, 4-OCH) & 217h, 213h, 255 & 25.8 & 320 & 2.69 & 33 \\ \hline commot a add (4, OH, 3-OCH) & 217h, 213h, 255 & 25.8 & 320 & 2.69 & 33 \\ \hline commot a add (4, OH, 3-OCH) & 217h, 213h, 325 & 75.7 & 30 & 2.69 & 51 \\ \hline commot a add (4, OH, 3-OCH) & 225h, 233h, 377h, 329 & 75.7 & 320 & 2.50 & 2.69 & 10 \\ \hline commot a add (4, OH, 3-OCH) & 225h, 233h, 327h, 329 & 75.7 & 320 & 2.69 & 13 \\ \hline commot a add (4, OH, 3-OCH) & 225h, 233h, 327h, 329 & 75.7 & 320 & 2.69 & 13 \\ \hline commot a add (4, OH, 3-OCH) & 225h, 233h, 327h, 329 & 75.7 & 320 & 2.69 & 13 \\ \hline commot a add (4, OH, 3-OCH) & 255h, 323h, 327h, 329 & 75.7 & 320 & 2.69 & 13 \\ \hline commot a add (4, OH, 3-OCH) & 255h, 233h, 337h, 329 & 75.7 & 320 & 2.69 & 30 & 2.69 & 14 \\ \hline commot a add (4, OH, 3-OCH) & 255h, 275h, 35 & 51.0 & 320 & 1.93 & 64 \\ \hline adjactin (5, COH) & 255h, 276, 315 & 51.0 & 320 & 1.93 & 64 \\ \hline adjactin (5, COH) & 257, 256h, 334 & 3377 & 300 & 1.69 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & $	β -resorcylic acid (2,4-OH) vanillic acid (4-OH, 3-OCH ₂)	250, 291 257 290	10.9 16 3	250 250	8.48 5.74	60 50
$\begin{array}{c} \text{channel add} (2-04) & 718h, 232h, 72h & 719 & 720 & 4.34 & 38 \\ \text{p-channel add} (2-04) & 718h, 232h, 72h & 719 & 720 & 4.34 & 32 \\ \text{p-channel add} (2-04) & 718h, 231h, 72h & 719 & 720 & 4.34 & 320 \\ \text{p-channel add} (2-04) & 718h, 731h, 72h & 719 & 720 & 4.34 & 320 \\ \text{p-channel add} (2-04) & 72h & 7$	gallic acid (3,4,5-OH)	269	5.8	250	17.0	74
$\begin{array}{c} crossing (d-P) \\ p = commin (d-P) \\ p = comm$	cinnamic acids	212ch 222ch 274	21.0	220	1.24	20
$\begin{array}{c} \begin{array}{c} \mbox{prominic acid} (4-04) \\ \mbox{caffies acid} (3-04) \\ \mb$	<i>m</i> -coumaric acid (2-OH)	21351, 23251, 276 211sh, 231sh, 275, 320sh	21.9	320	4.30 9.99	58 54
$ \begin{array}{c} cate cade (3.4-04) \\ chirangene and (2.4-04) \\ chirangene and $	<i>p</i> -coumaric acid (4-OH)	207sh, 226sh, 291sh, 307	23.3	320	2.36	22
$\begin{array}{c} \mbox{real} cald (4-OH - 3O-OH) call converts and the set of the set o$	catteic acid (3,4-OH) chlorogenic acid (catteoylquinic acid)	215, 241sh, 291sh, 319 217 241sh 294sh 321	18.4 14 1	320 320	2.07	38 36
$ \begin{array}{c} \text{isoferult: arid (3-0H, 4-0CH)} \\ \text{Flavonics} \\ \hline \\ $	ferulic acid (4-OH, 3-OCH ₃)	214, 239sh, 291sh, 325	25.8	320	2.09	33
Flavonci Field State St	isoferulic acid (3-OH, 4-OCH ₃)	215sh, 239sh, 291sh, 325	26.3	320	2.69	51
$ \begin{array}{c} restrict a construction of the set o$		Fla	avonoids			
$ \begin{array}{c} \begin{aligned} & \mbox{first} \\ flavones \\ flavone (rone) & 247, 295, 309sh & 88.8 & 280 & 2.53 & 32 \\ 7.4'-dihydroyflavone & 21518, 2535h, 307sh, 329 & 75.7 & 320 & 15.3 & 23 \\ 7.3'-4'-dihydroyflavone & 2155h, 253h, 307sh, 329 & 75.7 & 320 & 2.53 & 32 \\ erkwani (r.5'-OH) & 245, 253h, 307sh, 329 & 05.5 & 320 & 2.64 & 42 \\ baclachi (r.5'-OH) & 265, 324 & 90.5 & 320 & 2.44 & 42 \\ baclachi (r.5'-OH) & 265, 296h, 336 & 80.8 & 320 & 1.93 & 64 \\ apigenth (r.7, 4'-OH) & 265, 296h, 336 & 80.8 & 320 & 1.93 & 64 \\ apigenth (r.7, 4'-OH) & 265, 296h, 336 & 80.8 & 320 & 1.94 & 15 \\ apigenth (r.7, 4'-OH) & 265, 296h, 336 & 80.8 & 320 & 1.99 & 15 \\ apigenth (r.7, 4'-OH) & 265, 2936h, 336 & 35.2 & 320 & 1.94 & 50 \\ apigenth (r.7, 4'-OH) & 265, 2936h, 317 & 789 & 320 & 1.84 & 44 \\ uteolin(r, 7', 4'-OH) & 225, 254, 266, 296h, 317 & 789 & 320 & 3.33 & 26 \\ tuteolin-6'-C glucoside (nonocientifi) & 2128h, 254, 267, 346 & 37.1 & 320 & 2.18 & 44 \\ uteolin(r, 7', 4'-OH) & 225, 256, 296h, 317 & 789 & 320 & 2.37 & 35 \\ tuteolin-6'-C glucoside (nonocientifi) & 2128h, 254, 266, 346 & 262 & 230 & 2.76 & 42 \\ tuteolin-6'-C glucoside (nonocientifi) & 2128h, 254, 266, 346 & 262 & 230 & 2.63 & 74 & 42 \\ tuteolin-6'-C glucoside (nonocientifi) & 2128h, 254, 266, 346 & 262 & 230 & 2.63 & 74 & 42 \\ tuteolin-7'-Charanoside & 208, 305h, 320 & 2.44 & 45 & 320 & 2.48 & 32 & 2.57 & 35 \\ tuteolin-7'-Charanoside & 208, 305h, 320 & 316 & 320 & 2.44 & 45 & 320 & 2.44 & 45 & 320 & 2.57 & 33 & 33 & 33 & 320 & 2.57 & 33 & 33 & 33 & 33 & 320 & 2.57 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 320 & 2.57 & 33 & 3$			2' 4'			
$ \begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{$		8				
$ \begin{array}{c} \label{eq:second} \\ \hline \begin{tabular}{l l l l l l l l l l l l l l l l l l l $		7	$C \downarrow 2 6'$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		6 A	3			
Harmones January <		5				
flavone (none)247, 295, 30% h88.82902.53327,4'-dihydroyflavone235h, 258h, 307h, 32975,73201.53237,4'-dihydroyflavone235h, 258h, 307h, 32960.53202.0941chrysin (5,7-OH)245h, 267, 31388.83202.7836genkwanin (5,4'-OH, 7-OCH)215h, 274, 22184.03202.4442balacalei (5,6, 7-OH)215h, 274, 32184.03201.9364apigenin (5,4'-OH, 7-Ochuconide (balcalin)216h, 276, 31551.03201.9364apigenin (5,4'-OH, 7-Ochuconide (balcalin)265, 295h, 33580.83201.9967apigenin - C-glucoside (kontokin)266, 294h, 33431,73202.1844utelini, 2', 3'A'-OH)265, 2265, 290h, 34718.93202.2462utelini-C-glucoside (nononientin)212h, 254, 267, 34621.73202.5735utelini-C-glucoside (infentin)244, 265, 290h, 34718.92.002.6442utelini-C-glucoside (infentin)24, 266, 34626.23202.7642utelini-C-glucoside (infentin)251, 265, 34431.13202.6432utelini-C-glucoside (infentin)251, 265, 34464.43202.6432utelini-C-glucoside (infentin)251, 265, 34464.43202.4465utelini-C-glucoside (infentin)251, 265, 34464.43202.4452uteli	flavones		0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	flavone (none)	247, 295, 309sh	88.8	280	2.53	32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7,3',4'-trihydroxyflavone	235sh, 253sh, 307sh, 339	60.5	320	2.09	41
gentivarini (5.4'-OH, /-OCH ₃) 265, 334 90.5 320 840 20 baicalein (5.4'-OH, /-OCH ₃) 215sh, 274, 321 840 320 1.93 64 baicalein (5.7'-OH) 265, 2005, 336 80.8 320 1.99 15 apigenin (5.7'-OH) 265, 2005, 336 80.8 320 1.74 50 apigenin -C-glucosite (insuit) 267, 294sh, 334 31.7 320 2.18 44 vitteoin -C-glucosite (insuit) 252, 265, 290sh, 347 78.9 320 3.03 26 luteolin (5, 7, 4', -0H) 252, 265, 346 35.2 320 2.77 35 luteolin -C-glucoside (nonorientin) 212, 24, 266, 346 37.1 320 2.85 48 luteolin -C-glucoside (nientin) 252, 265, 346 320 2.63 74 luteolin -C-glucoside (direntin) 250, 265, 344 840 320 2.84 32 diosmetin (5, 7, 4', 0'H) 240, 266, 328 31.6 320 2.44 45 diosmetin (5, 7, 4', 0'H) 269, 3	chrysin (5,7-OH)	243sh, 267, 311	88.8	320	2.78	36
bicatein-7-2-Gucoronide (baicalin) 216:sh, 276, 315 51.0 320 193 64 apigerin (5, 7, 4 ² -OH) 265, 290sh, 336 80.8 320 1.99 15 apigerin -C-2glucosite (soultexin) 265, 333 50.7 320 1.89 67 apigerin -C-2glucosite (plotxin) 265, 333 50.7 320 1.84 44 witexin-2"-O-tharmosite 267, 294sh, 336 35.2 320 2.30 2.64 tuteolin (5, 7, 3'-OH) 252, 265, 290sh, 371 78.9 320 2.85 48 tuteolin -C-Qucoside (nomorientin) 212sh, 254, 267, 346 27.1 320 2.84 48 tuteolin-7-O-dytocside 240, 266, 38 31.6 320 2.84 32 tuteolin-4'-O-dytocside 240, 266, 38 31.6 320 2.84 32 dissmetin-7-O-tharmoside (dissmin) 251, 265, 344 61.4 320 2.40 60 chrysoeriol (5, 7, 4'OH), 4'-OCH) 269, 323 91.6 320 2.81 32 dissmetin-7-O-tharmo	genkwanin (5,4'-OH, 7-OCH ₃) baicalein (5,6,7-OH)	265, 334 215sh, 274, 321	90.5 84 0	320 320	8.40 2.44	20 42
aplgenin (5, 7, 4'-OH) 265, 290sh, 336 80.8 320 1.99 15 aplgenin -C-Oglucoside (sovitexin) 265, 333 50.7 320 1.84 67 aplgenin -C-Oglucoside (injentin) 265, 234, 334 31.7 320 2.18 44 vitexin-2''-Orhamnoside 267, 294sh, 334 31.7 320 2.18 44 vitexin-2''-Orhamnoside 267, 294sh, 336 35.2 320 2.24 62 luteolin -C-glucoside (momoorientin) 212sb, 242, 267, 346 27.5 320 2.57 35 luteolin-C-glucoside (informtin) 254, 266, 346 2.62 320 2.76 42 luteolin-3'.7-di-Oglucoside 240, 266, 338 31.6 320 2.83 74 luteolin-5', 74'-O, 74'-Oglucoside 244b, 265, 290sh, 336 54.9 320 2.84 45 diosmetin (5, 7.4'OH, 4'-OCH ₂) 250, 265, 344 84.0 320 2.84 32 diosmetin (5, 7.4'OH, 4'-OCH ₂) 249, 266, 323 91.6 320 2.43 14	baicalein-7- <i>O</i> -glucuronide (baicalin)	216sh, 276, 315	51.0	320	1.93	64
apigenin 7- 0-glucoside (apigetin) 267, 333 50.2 320 1.74 300 apigenin 7- 0-glucoside (itexin) 267, 294sh, 334 31.7 320 2.18 44 vitexin 2 ⁻⁷ O-tharmoside 267, 294sh, 336 35.2 320 2.24 62 luteolin (5, 7,3',4'-OH) 252, 265, 290sh, 347 78.9 320 3.03 26 luteolin - C-glucoside (nonorientin) 212sh, 254, 267, 346 27.5 320 2.57 35 luteolin - C-glucoside (crientin) 254, 266, 346 26.2 320 2.76 42 luteolin 5, 7.3'OH, 74-Oglucoside 240, 266, 338 31.6 320 2.63 74 luteolin 5, 7.3'OH, 4'-OCH) 250, 265, 344 84.0 320 2.84 32 diosmetin 7-O-tharmoside (diosmin) 251, 265, 344 81.8 320 2.51 22 jardenin A (65, 7.8, 4'-OCH) 249, 266, 287.6h, 344 83.8 320 2.51 32 losmetin (5, 6, 7.3, 4'-OCH) 249, 266, 287.6h, 344 83.8 320 2.44 30 </td <td>apigenin (5,7,4'-OH) apigenin 6, C duceside (isovitovin)</td> <td>265, 290sh, 336</td> <td>80.8</td> <td>320</td> <td>1.99 1.74</td> <td>15 50</td>	apigenin (5,7,4'-OH) apigenin 6, C duceside (isovitovin)	265, 290sh, 336	80.8	320	1.99 1.74	15 50
apigenin-B-C-glucoside (vitexin) 267, 294sh, 334 31.7 320 2.18 44 vitexin. ²⁷ . Orharmoside 267, 294sh, 336 35.2 320 2.24 62 luteolin (5, 7, 3', 4'-OH) 252, 265, 290sh, 347 78.9 320 3.03 26 luteolin -C-glucoside (nonoorientin) 212sh, 254, 267, 346 27.5 320 2.57 35 luteolin -C-glucoside (orientin) 254, 266, 346 26.1 320 2.63 74 luteolin -T-d-C-glucoside 240, 266, 338 31.6 320 2.84 32 diosmetin (5, 7, 3'-OH, 4'-OCH ₃) 250, 265, 344 84.0 320 2.84 32 diosmetin (5, 7, 3'-OH, 4'-OCH ₃) 250, 265, 344 81.0 320 2.40 60 chysoeriol (5, 7, 4'-OH, 3'-OCH ₃) 249, 266, 287sh, 344 83.8 320 2.25 33 langeretin (5, 6, 7, 8, 4'-OCH ₃) 269, 323 91.6 320 1.43 14 gardenin A (5, 6, 7, 8, 4'-OCH ₃) 249, 326, 344sh, 305, 341 91.5 370 8.08	apigenin-7- <i>O</i> -glucoside (apigetrin)	265, 333	50.7	320	1.89	67
Weint 2 Containingsate 201, 244sh, 33b 332, 2 320 244 62 Liteolin 5, 73, 4'-OH 255, 200sh, 347 78.9 320 303 26 Liteolin -C-Glucoside (tomoorientin) 212sh, 254, 266, 346 27.5 320 285 48 Liteolin -C-Glucoside (crientin) 254, 266, 346 26.2 320 2.63 74 Liteolin -C-Glucoside (crientin) 254, 266, 346 26.2 320 2.63 74 Liteolin -C-Glucoside (crientin) 254, 266, 344 84.0 320 2.84 32 diosmetin (5, 7.3, -O-H, -O-thamnoside (diosmin) 251, 265, 344 81.8 320 2.51 22 stangeretin (5, 7.4, -OCH,) 249, 266, 287sh, 344 83.8 320 2.25 33 Langeretin (5, 6, 7.8, 4, -OCH,) 249, 266, 287sh, 344 83.8 320 2.49 30 sinensetin (5, 6, 7.8, 4, '5'-CH ₁) 247, 256sh, 295, 310sh 88.6 320 1.43 14 gardenin A (5.6, 7, 8.3, 4', 5'-CH ₁) 247, 256sh, 295, 310sh 88.6 320 <td>apigenin-8-C-glucoside (vitexin)</td> <td>267, 294sh, 334</td> <td>31.7</td> <td>320</td> <td>2.18</td> <td>44</td>	apigenin-8-C-glucoside (vitexin)	267, 294sh, 334	31.7	320	2.18	44
Iuteolin-5-C-glucoside (nomoorientin) 212sh, 254, 267, 346 27.5 320 2.57 35 Iuteolin-8-C-glucoside (orientin) 253, 265, 346 37.1 320 2.85 48 Iuteolin-8-C-glucoside (orientin) 254, 266, 346 26.2 320 2.63 74 Iuteolin-7-O-glucoside 240, 266, 338 31.6 320 2.84 32 diosmetin (5, 7, 3'-OH, 4'-OCH ₂) 250, 265, 344 84.0 320 2.84 32 diosmetin (5, 7, 3'-OH, 4'-OCH ₂) 250, 265, 344 81.8 320 2.51 22 5, 7-dihydroxy, 3', 4', 5'-trimethoxylfavone 269, 305sh, 329 88.3 320 2.49 30 stangeretin (5, 6, 7, 8, 3', 4', 5'-OCH ₃) 247, 256sh, 295, 310sh 88.6 320 2.49 30 flavonol (3-OH) 236, 344sh, 305, 341 91.5 370 8.08 75 galangin (3, 5, 7-OH) 237, 304, 307, 355 89.9 370 3.49 46 datiscelin (3, 5, 7, 4'-OH) 257, 304, 344 83.1 370 6.10 112 <td>luteolin (5,7,3',4'-OH)</td> <td>252, 265, 290sh, 347</td> <td>35.2 78.9</td> <td>320</td> <td>3.03</td> <td>26</td>	luteolin (5,7,3',4'-OH)	252, 265, 290sh, 347	35.2 78.9	320	3.03	26
Iuteolin-7-0-Glucoside 253, 265, 346 37.1 320 2.85 48 Iuteolin-7-0-Glucoside 240, 266, 336 31.6 320 2.63 74 Iuteolin-7-0-Glucoside 244, 266, 336 31.6 320 2.84 45 diosmetin-7-0-tharmoside (dismin) 251, 265, 344 84.0 320 2.84 32 diosmetin-7-0-tharmoside (dismin) 251, 265, 344 81.4 320 2.40 60 chrysoeriol (5, 7,4'-0H, 3'-OCH ₃) 249, 266, 287sh, 344 81.8 320 2.51 22 5, 7-ditytyos, 3', 4', 5'-timethoxyflavone 269, 305sh, 329 88.3 320 2.49 30 sinensetin (5, 6, 7, 8, 4'-OCH ₃) 247, 256sh, 295, 310sh 88.6 320 2.49 30 sinensetin (5, 6, 7, 3', 4'-OCH ₃) 240sh, 267, 329 86.3 320 1.86 39 flavonols	luteolin-6-C-glucoside (homoorientin)	212sh, 254, 267, 346	27.5	320	2.57	35
Intentin 3',7-di-Oglucoside 240, 266, 338 31.6 320 2.63 74 Iuteolin -3', 7-di-Oglucoside 244, 56, 290 sh, 336 54.9 320 2.34 45 diosmetin (5, 7, 3'-OH, 4'-OCH ₃) 250, 265, 344 84.0 320 2.84 32 diosmetin -7-O-rhamnoside (diosmin) 251, 265, 344 61.4 320 2.40 60 chrysceriol (5, 7, 4'-OH, 3'-OCH ₃) 249, 266, 287 sh, 344 83.8 320 2.51 22 5,7-dityproxy-3', 4',5'-timethoxyllavone 269, 305 sh, 329 88.3 320 2.43 14 gardenin A (5,6,7,8,3',4',5'-OCH ₃) 247, 256 sh, 295, 310 sh 88.6 320 1.43 14 gardenin A (5,6,7,8,3',4',5'-OCH ₃) 240 sh, 267, 329 86.3 320 1.86 39 flavonol 15.4', 3',4'-OCH ₃) 240 sh, 267, 329 86.3 320 1.86 39 flavonol (3-OH) 230, 344 sh, 305, 341 91.5 370 8.08 75 galangin (3,5,7-OH) 246, 292 sh, 344 58.0 370 1.	luteolin-7-O-glucoside luteolin-8-C-glucoside (orientin)	253, 265, 346 254 266 346	37.1 26.2	320 320	2.85 2.76	48 42
Interdin-4'-Oglucoside 244sh, 245, 290sh, 336 54.9 320 2.34 45 diosmetin (5,7,3'-OH, 4'-OCH ₃) 250, 265, 344 84.0 320 2.84 32 diosmetin -7-Orhanmoside (diosmin) 251, 265, 344 61.4 320 2.40 60 chrysoeriol (5, 7, 4'-OH, 3'-OCH ₃) 249, 266, 287sh, 344 83.8 320 2.51 22 5,7-dihydroxy-3',4',5'-timethoxyflavone 269, 305sh, 329 88.3 320 2.25 33 tangeretin (5,6,7,8,4',5'-OCH ₃) 247, 256sh, 295, 310sh 88.6 320 2.49 30 gardenin A (5,6,7,3',4'-OCH ₃) 240, 240sh, 207, 329 86.3 320 1.86 39 flavonol (3-OH) 236, 344sh, 305, 341 91.5 370 8.08 75 galangin (3,5,7-OH) 237 sh, 264, 307, 355 89.9 370 3.49 46 dissectin (3,5,7,2'OH) 257, 304, 344 83.1 370 6.10 112 kaempferol 3-Oglucoside (astragalin) 264, 292sh, 318sh, 363 82.3 370 1.86 3	luteolin-3',7-di- <i>O</i> -glucoside	240, 266, 338	31.6	320	2.63	74
utostricut (5, 7, 3-OT, 4 - OCTg)250, 201, 34464.03202.6432diosmetin -7-Orhamoside (diosmin)251, 265, 34461.43202.4060chrysoeriol (5, 7, 4'-OH, 3'-OCH ₃)249, 266, 287sh, 34483.83202.51225,7-dihydroxy-3', 4',5'-Trimethoxyflavone269, 305sh, 32988.33202.2533tangeretin (5,6, 7,8, 4'-OCH ₃)247, 256sh, 295, 310sh88.63201.4314gardenin A (5,6,7,8, 3',4',5'-OCH ₃)240sh, 267, 32986.33201.8639flavonols36, 344sh, 305, 34191.53708.0875galangin (3,5,7-OH)237, 34, 4683.13706.10112kaempferol (3,5,7,4'-OH)257, 304, 34683.13706.10112kaempferol (3,5,7,4'-OH)264, 291sh, 320sh, 34455.63704.4241kaempferol (3,5,7,4'-OH)263, 292sh, 34458.03705.3096kaempferol -3-O-glucoside (astragalin)264, 291sh, 320sh, 34453.23703.94120quercetin (3,5,7,3',4'-OH)253, 268sh, 297sh, 36875.53701.8630quercetin -3-O-glucoside (losquercitrin)253, 268sh, 294sh, 35141.73703.0059quercetin -3-O-glucoside (losquercitrin)253, 268sh, 294sh, 35744.23705.8250quercetin -3-O-glucoside (losquercitrin)253, 263sh, 34456.93705.8250quercet	luteolin-4'-O-glucoside	244sh, 265, 290sh, 336	54.9	320	2.34	45
chrysoeriol (5,7,4'-OH, 3'-OCH3)249, 266, 287sh, 34483.83202.51225,7-dihydroxy-3',4',5'-CH3)269, 305sh, 32988.33202.2533tangeretin (5,6,7,8,4'-OCH3)269, 32391.63201.4314gardenin A (5,6,7,8,4',5'-OCH3)247, 256sh, 295, 310sh88.63202.4930sinensetin (5,6,7,3',4'-OCH3)240sh, 267, 32986.33201.8639flavonols	diosmetin-7- <i>O</i> -rhamnoside (diosmin)	250, 265, 344 251, 265, 344	04.0 61.4	320	2.40	3∠ 60
s)	chrysoeriol (5,7,4'-OH, 3'-OCH ₃)	249, 266, 287sh, 344	83.8	320	2.51	22
Instruction	5,7-ainyaroxy-3',4',5'-trimethoxyflavone tangeretin (5.6,7.8,4'-OCH ₂)	269, 305sh, 329 269, 323	88.3 91.6	320 320	2.25 1.43	33 14
sinensetin (5,6,7,3',4'-OCH3)240sh, 267, 32986.33201.8639flavonolsflavonolsflavonol (3-OH)236, 344sh, 305, 34191.53708.0875galangin (3,5,7-OH)237sh, 264, 307, 35589.93703.4946datiscetin (3,5,7,2'-OH)257, 304, 34683.13706.10112kaempferol (3,5,7,4'-OH)264, 292sh, 318sh, 36382.33701.9020kaempferol-3-O-glucoside (astragalin)264, 291sh, 320sh, 34455.63704.4241kaempferol-3-O-rutinoside263, 292sh, 34458.03705.3096kaempferol-3-O-neohesperidoside246, 263, 318sh, 36153.23702.1868morin (3,5,7,2',4'-OH)251, 261sh, 35458.23703.94120quercetin-3-O-glucoside (isoquercitrin)253, 263sh, 297sh, 36875.53701.8630quercetin-3-O-rutinoside (upercitrin)253, 263sh, 294sh, 35141.73703.0059quercetin-3-O-rutinoside (quercitrin)253, 263sh, 294sh, 35240.63703.8250robinetin (3,7,3',4',5'-OH)249, 317, 36134.03701.8487isorhamnetin (3,5,7,3'-OH, 3'-OCH3)253, 269sh, 302sh, 36784.23705.0416tamarixetin (3,5,7,3'-OH, 4'-OCH3)253, 269sh, 302sh, 36483.83701.6815quercetagetin (3,5,7,3',4'-OH)251, 267sh, 300sh, 3704.933702.5987 <td>gardenin A (5,6,7,8,3',4',5'-OCH₃)</td> <td>247, 256sh, 295, 310sh</td> <td>88.6</td> <td>320</td> <td>2.49</td> <td>30</td>	gardenin A (5,6,7,8,3',4',5'-OCH ₃)	247, 256sh, 295, 310sh	88.6	320	2.49	30
flavonol (3-OH) 236, 344sh, 305, 341 91.5 370 8.08 75 galangin (3,5, 7-OH) 237sh, 264, 307, 355 89.9 370 3.49 46 datiscetin (3,5,7,2'-OH) 257, 304, 346 83.1 370 6.10 112 kaempferol (3,5,7,4'-OH) 264, 292sh, 318sh, 363 82.3 370 1.90 20 kaempferol-3-O-glucoside (astragalin) 264, 291sh, 320sh, 344 55.6 370 4.42 41 kaempferol-3-O-rutinoside 263, 292sh, 344 58.0 370 5.30 96 kaempferol-3-O-neohesperidoside 246, 263, 318sh, 361 53.2 370 2.18 68 morin (3,5,7,2',4'-OH) 251, 261sh, 354 58.2 370 3.94 120 quercetin -3-O-glucoside (isoquercitrin) 253, 268sh, 297sh, 368 75.5 370 1.86 30 quercetin -3-O-rutinoside (rutin) 255, 265sh, 294sh, 351 41.7 370 3.06 55 quercetin -3-O-rutinoside (quercitrin) 253, 263sh, 294sh, 352 40.6 370 3.06 55 quercetin -3-O-rutinoside (quercitrin) 253, 263sh, 344 <t< td=""><td>sinensetin (5,6,7,3',4'-OCH₃)</td><td>240sh, 267, 329</td><td>86.3</td><td>320</td><td>1.86</td><td>39</td></t<>	sinensetin (5,6,7,3',4'-OCH ₃)	240sh, 267, 329	86.3	320	1.86	39
galangin (3,5,7-OH)237sh, 264, 307, 35589.93703.4946datiscetin (3,5,7,2'-OH)257, 304, 34683.13706.10112kaempferol (3,5,7,4'-OH)264, 292sh, 318sh, 36382.33701.9020kaempferol-3-O-glucoside (astragalin)264, 291sh, 320sh, 34455.63704.4241kaempferol-3-O-rutinoside263, 292sh, 34458.03705.3096kaempferol-7-O-neohesperidoside246, 263, 318sh, 36153.23702.1868morin (3,5,7,2',4'-OH)251, 261sh, 35458.23703.94120quercetin (3,5,7,3',4'-OH)253, 268sh, 297sh, 36875.53701.8630quercetin-3-O-glucoside (isoquercitrin)253, 263sh, 294sh, 35141.73703.0059quercetin-3-O-rutanoside (rutin)253, 263sh, 294sh, 35240.63703.6655quercetin-3-O-rhannoside (quercitrin)253, 263sh, 34456.93705.8250robinetin (3,7,3',4',5'-OH)249, 317, 36134.03701.8487isorhannetin (3,5,7,3'-OH, 4'-OCH ₃)253, 269sh, 302sh, 36784.23705.0416tamarixetin (3,5,7,3'-OH, 4'-OCH ₃)253, 269sh, 302sh, 36483.83701.6815quercetagetin (3,5,6,7,3',4',-OH)257, 273sh, 35841.03702.5987myricetin (3,5,7,3',4',-OH)257, 273sh, 35841.03702.6378myricetin (3,5,7,3',4',-OH)251,	flavonol (3-OH)	236, 344sh, 305, 341	91.5	370	8.08	75
uarusceuri (3,5,7,2-0T)237, 349, 34083.15700.10112kaempferol (3,5,7,4'-OH)264, 292sh, 318sh, 36382.33701.9020kaempferol-3-O-glucoside (astragalin)264, 292sh, 318sh, 36382.33704.4241kaempferol-3-O-trutinoside263, 292sh, 34455.63704.4241kaempferol-7-O-neohesperidoside246, 263, 318sh, 36153.23705.3096kaempferol-7-O-neohesperidoside246, 263, 318sh, 36153.23702.1868morin (3,5,7,2',4'-OH)251, 261sh, 35458.23703.94120quercetin 3-O-glucoside (isoquercitrin)253, 263sh, 294sh, 35141.73703.0059quercetin-3-O-rutinoside (quercitrin)253, 263sh, 294sh, 35240.63703.0655quercetin-3-O-rutinoside (quercitrin)253, 263sh, 34456.93705.8250robinetin (3,7,3',4',5'-OH)249, 317, 36134.03701.8487isorhannetin (3,5,7,3'-OH, 4'-OCH ₃)253, 269sh, 302sh, 36784.23705.0416tamarixetin (3,5,7,3'-OH, 4'-OCH ₃)253, 269sh, 296sh, 302sh, 37049.33702.5987quercetagetin (3,5,6,7,3',4',-OH)257, 273sh, 35841.03702.5987myricetin (3,5,7,3',4',5'-OH)251, 267sh, 300sh, 37049.33702.6378myricetin (3,5,7,3',4',5'-OH)251, 267sh, 34936.43703.7784	galangin (3,5,7-OH)	237sh, 264, 307, 355	89.9	370	3.49	46
kaempferol-3-O-glucoside (astragalin)264, 291sh, 320sh, 34455.63704.4241kaempferol-3-O-rutinoside263, 292sh, 34458.03705.3096kaempferol-7-O-neohesperidoside246, 263, 318sh, 36153.23702.1868morin (3,5,7,2',4'-OH)251, 261sh, 35458.23703.94120quercetin (3,5,7,3',4'-OH)253, 268sh, 297sh, 36875.53701.8630quercetin-3-O-glucoside (isoquercitrin)253, 263sh, 294sh, 35141.73703.0059quercetin-3-O-rutinoside (rutin)255, 265sh, 294sh, 35240.63703.0655quercetin-3-O-rutinoside (quercitrin)253, 263sh, 34456.93705.8250robinetin (3,7,3',4',5'-OH)249, 317, 36134.03701.8487isorhamnetin (3,5,7,4'-OH, 3'-OCH ₃)253, 269sh, 302sh, 36784.23705.0416tamarixetin (3,5,7,3'-OH, 4'-OCH ₃)253, 268sh, 296sh, 30483.83701.6815quercetagetin (3,5,7,3',4',5'-OH)257, 273sh, 35841.03702.5987myricetin (3,5,7,3',4',5'-OH)251, 267sh, 300sh, 37049.33702.6378myricetin (3,5,7,3',4',5'-OH)251, 267sh, 30sh, 37049.33702.6378myricetin (3,5,7,3',4',5'-OH)251, 267sh, 30sh, 37049.33702.6378myricetin (3,5,7,3',4',5'-OH)251, 267sh, 30sh, 37049.33703.7784 <td>kaempferol (3,5,7,4'-OH)</td> <td>257, 304, 340 264, 292sh, 318sh, 363</td> <td>63.1 82.3</td> <td>370</td> <td>0.10 1.90</td> <td>20</td>	kaempferol (3,5,7,4'-OH)	257, 304, 340 264, 292sh, 318sh, 363	63.1 82.3	370	0.10 1.90	20
kaempieroi-3-C-ruinoside263, 292sn, 34458.03705.3096kaempferoi-7-C-neohesperidoside246, 263, 318sh, 36153.23702.1868morin (3,5,7,2',4'-OH)251, 261sh, 35458.23703.94120quercetin (3,5,7,3',4'-OH)253, 268sh, 297sh, 36875.53701.8630quercetin-3-C-glucoside (isoquercitrin)253, 263sh, 294sh, 35141.73703.0059quercetin-3-C-rutinoside (rutin)255, 265sh, 294sh, 35240.63703.0655quercetin-3-C-rutinoside (quercitrin)253, 263sh, 34456.93705.8250robinetin (3,7,3',4',5'-OH)249, 317, 36134.03701.8487isorhamnetin (3,5,7,4'-OH, 3'-OCH ₃)253, 268sh, 296sh, 36483.83701.6815quercetagetin (3,5,7,3'-OH, 4'-OCH ₃)253, 268sh, 296sh, 36483.83701.6815quercetagetin (3,5,7,3',4',5'-OH)251, 267sh, 30sh, 37049.33702.5987myricetin (3,5,7,3',4',5'-OH)251, 267sh, 30sh, 37049.33702.5987myricetin (3,5,7,3',4',5'-OH)251, 267sh, 30sh, 37049.33702.6378myricetin (3,5,7,3',4',5'-OH)251, 267sh, 30sh, 37049.33703.7784	kaempferol-3- <i>O</i> -glucoside (astragalin)	264, 291sh, 320sh, 344	55.6	370	4.42	41
morin (3,5,7,2',4'-OH)251, 261sh, 35458.23703.49120quercetin (3,5,7,3',4'-OH)253, 268sh, 297sh, 36875.53701.8630quercetin -3-O-glucoside (isoquercitrin)253, 263sh, 294sh, 35141.73703.0059quercetin -3-O-rutinoside (rutin)255, 265sh, 294sh, 35240.63703.0655quercetin -3-O-rhamnoside (quercitrin)253, 263sh, 34456.93705.8250robinetin (3, 7, 3', 4', 5'-OH)249, 317, 36134.03701.8487isorhamnetin (3, 5, 7, 4'-OH, 3'-OCH ₃)253, 268sh, 296sh, 36483.83701.6815quercetagetin (3, 5, 7, 3'-OH, 4'-OCH ₃)253, 268sh, 296sh, 36483.83701.6815quercetagetin (3, 5, 7, 3', 4', 5'-OH)251, 267sh, 300sh, 37049.33702.5987myricetin (3, 5, 7, 3', 4', 5'-OH)251, 267sh, 300sh, 37049.33702.6378myricetin -3-O-rhamnoside (myricitrin)250sh, 262, 298sh, 34936.43703.7784	Kaempterol-3-O-rutinoside kaempterol-7-O-neobesperidoside	263, 292sh, 344 246, 263, 318sh 361	58.0 53.2	370 370	5.30 2.18	96 68
quercetin (3,5,7,3',4'-OH)253, 268sh, 297sh, 36875.53701.8630quercetin-3-O-glucoside (isoquercitrin)253, 263sh, 294sh, 35141.73703.0059quercetin-3-O-rutinoside (rutin)255, 265sh, 294sh, 35240.63703.0655quercetin-3-O-rhamnoside (quercitrin)253, 263sh, 34456.93705.8250robinetin (3,7,3',4',5'-OH)249, 317, 36134.03701.8487isorhametin (3,5,7,4'-OH, 3'-OCH ₃)253, 269sh, 302sh, 36784.23705.0416tamarixetin (3,5,7,3'-OH, 4'-OCH ₃)253, 268sh, 294sh, 36483.83701.6815quercetagetin (3,5,6,7,3',4',-OH)257, 273sh, 35841.03702.5987myricetin (3,5,7,3',4',5'-OH)251, 267sh, 300sh, 37049.33702.6378myricetin -3-O-rhamnoside (myricitrin)250sh, 262, 298sh, 34936.43703.7784	morin (3,5,7,2',4'-OH)	251, 261sh, 354	58.2	370	3.94	120
quercetin-3-O-rutinoside (rutin) 253, 2051, 27431, 351 41.7 570 5.00 59 quercetin-3-O-rutinoside (rutin) 255, 265sh, 294sh, 352 40.6 370 3.06 55 quercetin-3-O-rutinoside (quercitrin) 253, 263sh, 344 56.9 370 5.82 50 robinetin (3,7,3',4',5'-OH) 249, 317, 361 34.0 370 1.84 87 isorhamnetin (3,5,7,3'-OH, 4'-OCH ₃) 253, 269sh, 302sh, 367 84.2 370 5.04 16 tamarixetin (3,5,7,3'-OH, 4'-OCH ₃) 253, 268sh, 296sh, 364 83.8 370 1.68 15 quercetagetin (3,5,6,7,3',4',-OH) 257, 273sh, 358 41.0 370 2.59 87 myricetin (3,5,7,3',4',5'-OH) 251, 267sh, 300sh, 370 49.3 370 2.63 78 myricetin (3,5,7,3',4',5'-OH) 250sh, 262, 298sh, 349 36.4 370 3.77 84	quercetin (3,5,7,3',4'-OH)	253, 268sh, 297sh, 368	75.5 41 7	370	1.86	30 50
quercetin-3-O-rhamnoside (quercitrin)253, 263sh, 34456.93705.8250robinetin (3,7,3',4',5'-OH)249, 317, 36134.03701.8487isorhamnetin (3,5,7,4'-OH, 3'-OCH ₃)253, 269sh, 302sh, 36784.23705.0416tamarixetin (3,5,7,3'-OH, 4'-OCH ₃)253, 268sh, 296sh, 36483.83701.6815quercetagetin (3,5,6,7,3',4',-OH)257, 273sh, 35841.03702.5987myricetin (3,5,7,3',4',5'-OH)251, 267sh, 300sh, 37049.33702.6378myricetin (3,-7,3',4',5'-OH)250sh, 262, 298sh, 34936.43703.7784	quercetin-3-O-gucoside (isoquerciulif) quercetin-3-O-rutinoside (rutin)	255, 265sh, 294sh, 351	40.6	370	3.00	55
robinetin (3, 7, 3', 4', 5'-0H) 249, 317, 361 34.0 370 1.84 87 isorhamnetin (3,5,7,4'-0H, 3'-OCH ₃) 253, 269sh, 302sh, 367 84.2 370 5.04 16 tamarixetin (3,5,7,3'-0H, 4'-OCH ₃) 253, 268sh, 296sh, 364 83.8 370 1.68 15 quercetagetin (3,5,6,7,3',4',-OH) 257, 273sh, 358 41.0 370 2.59 87 myricetin (3,5,7,3',4',5'-OH) 251, 267sh, 300sh, 370 49.3 370 2.63 78 myricetin -3-O-rhamnoside (myricitrin) 250sh, 262, 298sh, 349 36.4 370 3.77 84	quercetin-3-O-rhamnoside (quercitrin)	253, 263sh, 344	56.9	370	5.82	50
tamarixetin (3,5,7,3'-OH, 4'-OCH ₃) 253, 268sh, 296sh, 364 83.8 370 1.68 15 quercetagetin (3,5,7,3',4',-OH) 257, 273sh, 358 41.0 370 2.59 87 myricetin (3,5,7,3',4',5'-OH) 251, 267sh, 300sh, 370 49.3 370 2.63 78 myricetin -3-O-rhamnoside (myricitrin) 250sh, 262, 298sh, 349 36.4 370 3.77 84	robinetin (3,7,3',4',5'-OH) isorhamnetin (3,5,7,4'-OH, 3'-OCH ₂)	249, 317, 361 253, 269sh 302sh 367	34.0 84.2	370 370	1.84 5.04	87 16
quercetagetin (3,5,6,7,3',4',-OH)257, 273sh, 35841.03702.5987myricetin (3,5,7,3',4',5'-OH)251, 267sh, 300sh, 37049.33702.6378myricetin -3-O-rhamnoside (myricitrin)250sh, 262, 298sh, 34936.43703.7784	tamarixetin (3,5,7,3'-OH, 4'-OCH ₃)	253, 268sh, 296sh, 364	83.8	370	1.68	15
myricetin (3, 7, 3, 4, 3, -07) 250sh, 262, 298sh, 349 36.4 370 2.03 78	quercetagetin (3,5,6,7,3',4',-OH)	257, 273sh, 358	41.0	370	2.59	87
	myricetin (3,3,7,3,4,3,-OH) myricetin-3- <i>O</i> -rhamnoside (myricitrin)	250sh, 262, 298sh, 349	49.5 36.4	370	2.03 3.77	70 84

Analysis of Vegetable Polyphenols

Table 1. (Continued)

				calibration	
polyphenols	λ_{\max} (nm)	$t_{\rm R}^a$ (min)	determining ^b (nm)	slope ^c (×10 ⁻⁴)	limit ^d (pmc
vanones (2–3 is saturated)	224ch 200 221ch	75.0	200	2.42	20
naringenin (5,7,4 -OH) naringenin-7- <i>O</i> -rutinoside (naringin)	22050, 288, 33150 211sh, 224sh, 281, 326sh	/5.2 41.3	280	2.63	38 42
eriodictyol (5,7,3',4'-OH)	227sh, 286, 332sh	54.4	280	2.10	40
hesperetin (5,7,3'-OH, 4'-OCH ₃)	229sh, 286, 333sh	79.4	280	2.28	20
nesperetin-7-0-rutinoside (nesperidin) (+)-taxifolin (3.5.7.3'.4'-0H)	224SN, 281, 334SN 229sh 287, 333sh	45.6 26.7	280	2.04	50 30
oflavones (B-ring binds to 3 position)	227311, 207, 333311	20.7	200	2.55	50
daidzein (7,4'-OH)	239sh, 246, 261sh, 300	64.1	250	1.61	52
daidzein-7- <i>O</i> -glucoside (daidzin)	248, 258sh, 299 230sh 248, 302	24.9	250	1.70	45
genistein (5.7.4'-OH)	259511, 240, 502 259, 329sh	79.8	250	1.34	15
genistein-7- <i>O</i> -glucoside (genistin)	259, 325	31.9	250	1.32	34
glycitein (7,4'-OH, 6-OCH ₃)	253, 317	73.1	250	1.87	16
grychein - 7 - O-grucoside (grychin)biochanin A (5 7-OH 4'-OCH2)	257, 319 259, 329sh	20.0 88.8	250	1.79	30 120
formononetin (7-OH, 4'-OCH ₃)	224sh, 246, 261sh, 302	85.1	250	1.63	21
	Catechins and Theafla	vins			
	QH II	1110			
OH		1			
		- OH	,OI	ł	
н	OH HO OH				
HO		\rightarrow	G = -CO	OH	
	HO	Даран Сан		I	
$\gamma \sim \Gamma_{\rm p} R_2$		<u> </u>	OI.	1	
OH ^{N3}		R ₂ OH			
atechins	OH 11				
(+)-catechin ($R_1 = H$, $R_2 = H$, $R_3 = OH$)	230sh, 278	13.6	280	11.3	180
(-)-gallocatechin ($R_1 = OH$, $R_2 = H$, $R_3 = OH$)	269	8.1	280	140	290
(–)-catechin gallate ($R_1 = H, R_2 = H, R_3 = OG$) (–)-gallocatechin gallate ($R_1 = OH, R_2 = H, R_3 = OG$)	276 273	20.1 19.7	280	2.50	42 68
(-)-epicatechin ($R_1 = H, R_2 = OH, R_3 = H$)	229sh, 277	18.4	280	11.5	94
(–)-epigallocatechin ($R_1 = OH, R_2 = OH, R_3 = H$)	229sh, 269	13.1	280	65.8	360
(-)-epicatecnin gallate ($R_1 = H$, $R_2 = OG$, $R_3 = H$) (-)-epigallocatechin gallate ($R_4 = OH$, $R_2 = OG$, $R_3 = H$)	276	22.9 17.0	280	2.12	30 80
eaflavins	213	17.0	200	5.24	00
theaflavine ($R_1 = OH, R_2 = OH$)	229sh, 267, 370, 446	80.8	280	1.92	18
theatlavin-3-gallate ($R_1 = OG$, $R_2 = OH$) theatlavin-3'-gallate ($R_1 = OH$, $R_2 = OG$)	225SN, 269, 370, 446 225sh 273, 370, 446	80.4 81.2	280	2.26	20 14
theaflavin-3,3'-digallate ($R_1 = OG$, $R_2 = OG$)	227sh, 273, 370, 446	81.3	280	1.28	10
· · · · · · · · · · · · · · · · · · ·	Chalcones				
		۶.			
	2	4			
	4' 2' β 10	5			
		6			
	5' <u>1</u> ' α				
	0 II				
chalcone (none)	227sh, 309	92.1	320	1.06	30
isoliquiritigenin (4,2',4'-OH)	255sh, 298sh, 367	84.2	320	2.86	39
phloretin (3,4,2,4 corr) phloretin ($\alpha - \beta$ bond is saturated, 4,2',4',6'-OH)	225sh, 285	80.3	320	11.5	81
	Anthocyanins				
	2	3,			
	8 -+ 12	3]⁴′			
		5,			
	$A C^2$	5'			
	0				
polargonidin (3.5.7.4', $O \sqcup$)	3 4 267 225ch 100 502	ד דא	F10	0.02	20
cvanidin (3.5.7.3'.4'-OH)	207, 323511, 409, 503 276, 320sh, 503	47.7	510	9.03 13.3	30 39
cyanidin-3-O-rutinoside	229sh, 278, 424sh, 503	17.4	510	8.87	57
delphinidin (3,5,7,3',4',5'-OH)	271, 336sh, 429, 521	28.2	510	9.94	27
	Anthraquinones				
	. 0				
	7				
	6	1 3			
	5 4 0				
anthraguinone (none)	251, 270sh. 325	88.5	250	0.84	26
	246 270 422	84.5	250	1.48	46
alizarin (1,2-OH)	240, 270, 423	04.5	200		
alizarin (1,2-OH) purpurin (1,2,4-OH) amadin (1,6,8-OH) 2, CH)	240, 270, 423 253, 288, 472 221ch 251, 245, 205, 434	89.2	250	1.94	60

Table 1	(Cont	inued)
---------	-------	--------

		Others			
caffeine	231sh, 271	16.7	280	4.17	30
sesamol	230, 293	19.2	280	1.64	24
ellagic acid	251, 300sh, 358	43.1	250	0.84	12

^{*a*} Retention times. ^{*b*} Wavelength for the determination. ^{*c*} Calibration curves y = ax, where *a* is the slope, *x* is the peak area, and *y* is the concentration (μ M). ^{*d*} Determination limit when 10 μ L of sample was analyzed, which was the amount giving a peak 10 times greater than the largest noise peak in the area.

pretreatment by hydrolysis, although this produces a loss of content due to the decomposition and polymerization of polyphenols. For example, under optical conditions, hydrolysis led to an underestimation of up to 50% of the true polyphenol level in food (32). Additionally, the results were affected by temperature, time, other components, and so on. Schieber et al. (36) improved the HPLC method to detect simultaneously aglycons and their glycosides without hydrolysis. However, the method could detect only one aglycon, quercetin.

Since the identification of aglycon species is essential, the direct determination of forms such as glycosides in foods without hydrolysis is needed. In the present study, we developed a HPLC method to quantify and identify every polyphenol, including glycoside and aglycon forms, in vegetables, fruits, and teas.

MATERIALS AND METHODS

Chemicals. The standard chemicals used to make the library were purchased as follows: most of the flavonoids were from Extrasynthèse (Genay, France), flavone was from Nacalai Tesque (Kyoto, Japan), and flavonol was from Tokyo Kasei Kogyo Co., Ltd. (Tokyo, Japan). Eight catechins were from Kurita Kogyo (Tokyo, Japan), and theaflavins were kindly provided by Ito-En, Ltd. (Tokyo, Japan). Simple polyphenols were high-grade commercially available products. These chemicals were dissolved in dimethyl sulfoxide (DMSO) at a concentration of 10 mM after examination of their purity by nuclear magnetic resonance (NMR) spectral analysis with a Bruker AC-250 (Bruker Analytik GMBH) and stored at -20 °C in the dark for up to 3 months. After dilution of these polyphenol solutions to a range from 1.0 to 1000 μ M with DMSO, calibration curves were made by HPLC with a photodiode array detector. Water was distilled twice, and all other reagents were of the highest grade available.

Vegetables, Fruits, and Teas. Fresh vegetables and fruits were obtained from local markets in Kobe City independently several times. The edible portions (100 g) were taken randomly from several individual samples and washed with tap water. After being chopped, they were homogenized in liquid nitrogen with a homogenizer (Nihonseiki Kaisha Co., Ltd., Osaka, Japan). Teas, cacao, and coffee beans from local groceries in Kobe City were powdered with a coffee mill. The homogenate and powder were lyophilized at 0.2 Pa for 48 h and stored at 4 °C in a desiccator before use.

Extraction of Polyphenols. The stored powders (50 mg) were extracted with 2 mL of 90% methanol containing 0.5% acetic acid, after adding 50 nmol of flavone in DMSO. Flavone was used mostly as an internal standard, because vegetables, fruits, and teas have been found to rarely contain flavone. When food samples gave a flavone peak on the HPLC, the internal standard was replaced with another, flavonol or chalcone. The solution was allowed to stand in a sonicater for 1 min, and the supernatant was recovered by centrifugation at 3000 rpm for 10 min. After extraction three times, the extracts were dried with a centrifugal concentrator (VC-96N, Taitec Co., Saitama, Japan). The residues were dissolved in 0.5 mL of DMSO and filtered through a Millex-LG 0.2- μ m membrane filter (Millipore Co., Bedford, MA) before the HPLC analysis. The treatment was repeated independently three times or more until the variation in the recoveries calculated with the internal standard was less than 5%.

HPLC. The HPLC system employed was a Hitachi HPLC series D-7000 (Tokyo, Japan) equipped with Hitachi model D-7000 chromatography data station software, autosampler D-7200, column oven D-7300, and diode array detection system D-7450 to monitor at all

Figure 1. Typical HPLC profile for polyphenols. Numbers show the following standard chemicals: 1, gallic acid; 2, gallocatechin; 3, protocatechuic acid; 4, β -resorcylic acid; 5, chlorogenic acid; 6, caffeic acid; 7, epigallocatechin gallate; 8, sesamol; 9, *p*-coumaric acid; 10, daidzein-7-*O*-glucoside; 11, catechin gallate; 12, luteolin-3',7-*O*-diglucoside; 13, *o*-coumaric acid; 14, luteolin-7-*O*-glucoside; 15, quercetin-3-*O*-rutinoside; 16, hesperetin-7-*O*-rutinoside; 20, daidzein; 21, quercetin; 22, luteolin; 23, kaempferol-3-*O*-glucoside; 20, daidzein; 21, quercetin; 22, luteolin; 23, kaempferol; 24, apigenin; 25, flavone; 26, galangin; 27, flavonol; 28, chalcone. The other polyphenols were eluted in the positions shown with arrows.

wavelengths from 200 to 600 nm. For the column, Capcell pak C18 UG120 ($250 \times 4.6 \text{ mm}$ i.d., S-5, 5 μ m, Shiseido Co., Ltd., Tokyo, Japan), joined with a guard column ($10 \times 4.0 \text{ mm}$ i.d.), was used at 35 °C. Gradient elution was performed with solution A, composed of 50 mM sodium phosphate (pH 3.3) and 10% methanol, and solution B, comprising 70% methanol, delivered at a flow rate of 1.0 mL/min as follows: initially 100% of solution A; for the next 15 min, 70% A; for another 30 min, 65% A; for another 20 min, 60% A; for another 5 min, 50% A; and finally 0% A for 25 min. The injection volume for the extract was 10 μ L.

Polyphenol Analyses. First, we made a library, comprising retention times on HPLC and spectra of aglycons, with a diode array detector for 100 standard chemicals and constructed the respective calibration curves, as shown in Table 1. The food extract was then analyzed using the same HPLC system. The detected polyphenol peaks were first compared with respect to retention time with those in the library, and next the aglycons were identified by comparison with spectra of standard chemicals. When the detected polyphenol did not coincide in terms of retention time with any of the standards, the food samples were subjected to hydrolysis as described in the next section and analyzed again by HPLC. Referring to the non-hydrolysis chromatographs, sample peaks were identified on the basis of the retention times and spectra for aglycons in the library, because almost all naturally occurring aglycons were covered. In rare cases, more information about the structure was required, and the identification was confirmed with a HPLC-mass spectrometer (LC/MS M-1200H, Hitachi) under atmospheric pressure with chemical ionization and ionizing at +30 eV.

Quantitative analysis was performed by chromatography of the nonhydrolyzed samples. Among polyphenol glycosides, those found in the library as related with aglycons were determined from the absorbance

Table 2. Recovery of Polyphenol	Standards Added	d to Radish Ro	ot
---------------------------------	-----------------	----------------	----

polyphenol standard	recovery (%) ^a	polyphenol standard	recovery (%) ^a	polyphenol standard	recovery (%) ^a
		Simple Polyphe	nols		
protocatechuic acid	75 ± 2	<i>p</i> -hydroxycinnamic acid	68 ± 1	chlorogenic acid	70 ± 4
o-hydroxycinnamic acid	78 ± 6	gallic acid	87 ± 3	caffeic acid	77 ± 9
		Flavonoids			
apigenin	78 ± 5	guercetin	83 ± 3	naringenin	79 ± 3
apigenin-7-O-glucoside	73 ± 3	quercetin-3-O-rutinoside	77 ± 2	naringenin-7-0-rutinoside	77 ± 5
luteolin	78 ± 7	myricetin	73 ± 2	flavone	81 ± 5
luteolin-7-O-glucoside	80 ± 4	myricetin-3-O-rhamnoside	92 ± 8	flavonol	76 ± 3
kaempferol	81 ± 2	daidzein	86 ± 3	chalcone	83 ± 3
kaempfenol-3-O-glucoside	81 ± 7	daidzein-7-O-glucoside	74 ± 4		

^a Fifty nanomoles each of the standard polyphenols was added to 50 mg of radish root powder and then extracted as described in the Materials and Methods. Values are the mean \pm SE (n = 6).

of the glycosides, and the glycosides not in the library were determined from the absorbance of the aglycons. For instance, the absorbance of quercetin-3-*O*-rutinoside (rutin) was used for all quercetin glycosides, and that of caffeic acid was used for cinnamic acid glycosides. The calibration curves were constructed with the specific wavelengths of standard chemicals: 250 nm for benzoic acids and isoflavones; 280 nm for flavanones, catechins, caffeine, phloretin, ellagic acid, and flavone; 320 nm for cinnamic acids, flavones other than flavone, and chalcones; 370 nm for flavonols; and 510 nm for anthocyanins, as shown in **Table 1**.

Hydrolysis. When aglycon profiles were required for the identification of glycosides, the stored food powder was subjected to hydrolysis by a modification of the method of Hertog et al. (*32*). Fifty milligrams of powder was placed in a test tube with a rubber cap and mixed with 4 mL of 62.5% aqueous methanol containing 0.5 mg/mL of *tert*butylhydroquinone and 1 mL of 2 N HCl. The rubber cap was pinholed, the tube was heated at 90 °C for 2 h, and the sample was then extracted with two volumes of ethyl acetate. The extract was dried under a nitrogen gas stream, dissolved in 0.5 mL of DMSO, filtered through a 0.2- μ m filter, and analyzed by HPLC.

RESULTS

HPLC Library. Every standard chemical gave an almost linear calibration curve through the zero point. The slopes and determination limits are listed in **Table 1**. Anthraquinone rhein was the most sensitive in the present system, determined at up to 5.7 pmol. (–)-Epigallocatechin was the most insensitive, with a determination limit of 360 pmol.

The present HPLC system was able to detect all of the chemicals in **Table 1** as the respective single peaks with good resolution. **Figure 1** shows a typical profile, with 28 chemicals, at a concentration of 1 nmol each, which are abundant polyphenols in food (*37*, *38*). Simple polyphenols were eluted with retention times between 5.8 and 34.3 min; catechins between 8.1 and 26.1 min; anthocyanins between 17.4 and 47.7 min; glycoside forms of flavones, flavonols, isoflavones, and flavanones between 20.1 and 61.4 min; their aglycon forms between 26.7 and 91.6 min; anthraquinones between 83.4 and 89.2 min; chalcones between 79.2 and 92.1 min; and theaflavins between 80.4 and 81.3 min. All chemicals in **Table 1** were eluted in 95 min.

Recovery with Extraction. The recovery with the extraction was examined using Japanese radish root, which is known to contain few polyphenols (37, 38). Fifty nanomoles each of 23 standard chemicals was added to the 50 mg powder of radish root and extracted and analyzed by HPLC as described in the Materials and Methods (**Table 2**). The recovery of chemicals when determined independently three times was in the range 68-92%, and the variance was 1-9%. The recovery and the

Figure 2. Analyses for onion polyphenols without (solid line) and with (dashed line) hydrolysis.

Figure 3. Analysis of burdock polyphenols.

low variance were considered to be sufficient to determine food polyphenols quantitatively.

Next, onion was employed, which contains quercetin glycosides at high levels and has been used as a model for many analyses (39-43). **Figure 2** shows the results of HPLC and spectra of three major peaks. The retention times did not coincide with those for any of the quercetin glycosides in the library (isoquercitrin, rutin, and quercitrin), but every photodiode array spectrum was very similar to that of quercetin aglycon. The onion powder was then hydrolyzed and analyzed again. Hydrolysis gave a single peak at a retention time of 75.5 min, which coincided with standard quercetin in retention time and spectra. This meant that all three glycosides consisted of

Table 3. Polyphenols Contents of Plant Foodstuffs

	polyphenol content (µmol/100 g fresh edible part) ^a						
food (scientific name)	flavonoids		simple polyphenols				
	Vegetables						
root carrot (<i>Daucus carota</i> L.) burdock (<i>Arctium lappa</i> L.)		ud ud	cinnamic acids chlorogenic acid ferulic acid cinnamic acids	0.5–0.6 38–178 38–100 120–532			
turnip (<i>Brassica campestris</i> L. var. glabra Kitam.) tuber		ud	cinnamic acids	5.6–15 8			
potato (Solanum tuberosum L.)		ud	chlorogenic acid cinnamic acids	1.9 18			
sweet potato (<i>Ipomoea batatas</i> L.) Chinese yam (<i>Dioscorea opposita</i> Thunb.) hulb		ud ud	cinnamic acids	54 ud			
onion (<i>Allium cepa</i> L.)	quercetin glycosides quercetin	92–178 1.2–1.9		ud			
petiole taro (<i>Colocasia esculenta</i> L.)	anthocyanins rutin guercetin glycosides	7.4 7.4 2.1		ud			
eaf	quoi oo 3. joo on uoo						
cabbage (Brassica oleracea var. capitata L.)	quercetin luteolin glycosides kaempferol glycosides	0.4 1.2 1.6	caffeic acid chlorogenic acid	7.1 11.1			
celery (<i>Apium graveolens</i> L.)	apigenin apigenin glycosides luteolin glycosides chrvsperiol glycosides	5.3–16 18–51 7.1–21 13–38	chlorogenic acid cinnamic acids	17–50 1.6–2.5			
Chinese cabbage (<i>Brassica campestris</i> var. <i>perviridis</i> L.)	kaempferol glycosides	54–115	caffeic acid chlorogenic acid	8.6–22 13–28			
Chinese chive (Allium tuberosum Rottle ex Spreng.)	kaempferol glycosides	16–67	ferulic acid cinnamic acids	1.9–26 1.5–7.2 13–22			
coriander (<i>Coriandrum sativum</i> L.)	rutin quercetin glycosides	180 48	cinnamic acids	100			
gariand chrysantnemum (<i>Chrysantnemum</i> coronarium L.) Indian spinach (<i>Basella rubra</i> L.)	apigenin-6-C-glucoside	ua 7.8—12	cinorogenic acid cinnamic acids caffeic acid	1.7–3.5 59–217 3.6–5.1			
lettuce (<i>Lactuca sativa</i> L.)	apigenin-8-C-glucoside quercetin glycosides	216–336 1.7–4.8	caffeic acid	16—86			
mizuna (<i>Elatostema umbellatum</i> Blume var. <i>majus</i>)	kaempferol glycosides quercetin glycosides	ud-6.66 ud-13.3 ud-1.53	chlorogenic acid caffeic acids ferulic acid	3.0-82 15.3-19.4 7.17-9.4			
mugwort (Artemisia princeps Pamp.)	isonannean	ud	protocal acid acid 2-hydroxybenzoic acid benzoic acids	5.2 383 6.8 7.6			
nalta jute (Corchorus olitorius L.)	kaempferol glycosides rutin isoquercitrin	8.5–26 12.5–37.3 18.1–96.9	cinnamic acids	80.5–729			
pak choi (Brassica campestris var. chinensis L.)	kaempferol glycosides	53–133	caffeic acid chlorogenic acid cinnamic acids	4.0–13 8.9–32 11–44			
parsley (<i>Petroselinum crispum</i> Nym. ex A.W. Hill.)	apigenin apigenin glycosides kaempferol glycosides	8.6–331 235–873 7.8–17		ud			
perilla (red) (<i>Perilla frutescens</i> Britt. var. <i>crispa</i>) quig gin cai (<i>Brassica campestris</i> var. <i>chinensis</i> L.)	kaempferol glycosides	ud 24–101	caffeic acids chlorogenic acid	1410–15 5.4–19 15–36			
radish (Raphanus sativus L.)	quercetin glycosides kaempferol glycosides	233 27	on name dolu3	ud			
radish (maturity) (<i>Raphanus sativus</i> L.) spinach (<i>Spinacia oleracea</i> L.)	kaempferol glycosides patuletin glycosides spinacetin glycosides 5,3'-dihydroxy-3-methoxy- 6:7-methylenedioxyflavone- 4'-glucronide methyl ester (TMMG) 5-bydroxy-3 2' dimethory	48–123 14.3–26.6 22.2–78.0 59.8–87.7	cinnamic acids cinnamic acids chlorogenic acid	168–229 1.48–2.8 1.91–2.5			
	6:7-methylenedioxyflavone- 4'-glucronide methyl ester (DDMG)	17.0-27.1					
turnip (<i>Brassica campestris</i> L. var. glavra.) water dropwort (<i>Oenanthe javanica</i> DC.)	kaempferol glycosides quercetin glycosides isorhamnetin glycosides	58 16–108 65–129	cinnamic acids caffeic acid chlorogenic acid ferulic acid cinamic acide	34 2.2–14 31–62 38–178			
Welsh onion (<i>Allium fistulosum</i> L.) curd or sprout asparagus (<i>Asparagus officinalis</i> L.)	kaempferol glycosides quercetin glycosides	79.1–95.4 7.7–95	chinamic acids caffeic acids chlorogenic acid cinnamic acids	3.7-10 8.8-10 1.3-5.7 9.7-24 1 7-16			

Table 3. (Continued)

	polyphenol content (μ mol/100 g fresh edible part) ^a					
food (scientific name)	flavonoids		simple polypl	nenols		
broccoli (Brassica oleracea var. botrytis L.)	luteolin luteolin glycosides	13.3 0.6	caffeic acid chlorogenic acid	9.4 2.8		
cauliflower (Brassica oleracea var. botrytis L.)	kaemprerol glycosides	0.3 ud	cinnamic acids	8		
bell pepper (green) (<i>Capsicum grossum</i> L.)	quercetin glycosides	17–23 13–37	caffeic acids	4.7–17		
bell pepper (maturity) (<i>Capsicum grossum</i> L.) bell pepper (pimento) (<i>Capsicum grossum</i> L.)	luteolin glycosides luteolin glycosides	6.3–14 15–42	chlorogenic acid	ud 34–133 93–280		
cacao (<i>Theobroma cacao</i> L.)	(+)-catechin (–)-gallocatechin (–)-epicatechin	305 27000 342 512	caffeine	1084		
corn (<i>Zae mays</i> L.)	() opigunocatoonin	ud	benzoic acid cinnamic acid ferulic acid	40–114 2–27 3–12		
tomato (<i>Lycopersicon esculentum</i> Mill.)	quercetin myricetin myricitrin	0.1 1.4 1.5	caffeic acid chlorogenic acid	5.4 17.9		
eggplant (Solanum melongena L.)	anthocyanins	229–364	caffeic acid chlorogenic acid ferulic acid cinpamic acids	2.2–14 31–62 38–180 3 7–10		
okura (Abelmoschus esculentus L.) bean and pea	quercetin glycosides	65–114		ud		
coffee bean (Coffea L.)		ud	caffeic acid chlorogenic acid caffeine cinnamic acids	166 698 4032 1350		
common bean (<i>Phaseolus vulgaris</i> L.) soybean (<i>Glicine max</i> L.)	kaempferol glycosides genistein daizein glycosides genistein glycosides	4.2–20 50 478 346		ud ud		
black soybean (<i>Glycine max</i> L.)	genistein daizein glycosides genistein glycosides (–)-epicatechin anthocyanins	70 263 290 129 18	protocatechuic acid	2.0		
carob (dry) (<i>Ceratonia siliqua</i> L.)	quercetin glycosides (+)-catechin (-)-epicatechin gallate	231 175 68	gallic acid ellagic acid	3540 84		
garden pea (<i>Pisum sativum</i> L.)	quercetin glycosides Fruits	63		ud		
citrus	novingenin	4 4 27	aoffaio aoid			
graperiur (<i>Cirius parausi</i> Maci.)	naringenin glycosides apigenin glycosides	4.0–27 152–438 6.7–18	cinnamic acids	2.1–5.8 16–27		
large round kumquat (<i>Fortunella crassifolia</i> Swingle)	naringenin glycosides apigenin glycosides	211 81		ud		
lemon (<i>Citrus limon</i> Burm.)	hesperetin glycosides apigenin glycosides quercetin glycosides disemptin glycosides	135–318 5.0–12 2.8–4.8 40–56	caffeic acid	1.2–2.5		
orange (<i>Citrus unshiu</i> Mar.)	hesperidin naringenin glycosides	148 167		ud		
others apple (<i>Malus pumila</i> Mill.)	quercetin glycosides (+)-catechin (–)-epicatechin (–)-epicallocatechin	8.0–13 ud–44 ud–60 ud–223	chlorogenic acid cinnamic acids	4.8–35 0.8		
highbush blueberry (<i>Vaccinium australe</i> Small) Japanese pear (<i>Pyrus pyrifolia</i> Nakai) kiwi fruit (<i>Actinidia chinensis</i> Planch) loquat (<i>Eriobotrya japonica</i> Lindl.)	quercetin glycosides anthocyanins	ud–23 168–471 ud ud ud	chlorogenic acid cinnamic acids cinnamic acids cinnamic acids caffeic acid chlorogenic acid	273–325 21 6.6 4.6–5.3 16 250		
peach (Prunus persica L.)	quercetin glycosides catechins	2.8–4.3 29–93	cinnamic acids chlorogenic acid cinnamic acids	33 12–15 13–18		
pear (Pyrus communis L.)		ud	chlorogenic acida	2.6		
sweet cherry (Prunus avium Moench)	quercetin glycosides anthocyanins	13 81	cinnamic acids	317		

^a The data are expressed mostly as the range between lower and higher cases, because the foods were obtained in different seasons, May–July, August, September– October, or November–December. Values without a range are for foods cultured in one season. All food was analyzed independently three times with duplicate determinations, and all values are the mean. "ud" means under the detection limit when the extract from up to 5 g of fresh food was analyzed by HPLC. Values are expressed as aglycon amounts. In the polyphenol names, the singular form is found in the library (**Table 1**), and the plural form is one whose aglycon is detected as several forms of glycosides.

Table 4. Polyphenols in Teas (Camellia sinensis L.)

	polyphenols content (μ mol/100 g leaf) ^a			g leaf) ^a		polyp	henols cont	ent (µmol/100 g	g leaf) ^a
	greer Shizuoka	n tea a, Japan	oolong tea	black tea		greei Shizuoka	n tea a, Japan	oolong tea	black tea
	gyokuro	sencha	China	Kenya		gyokuro	sencha	China	Kenya
(+)-catechin	872	278	207	158	kaempferol-3-O-glucoside	268	182	83	305
(-)-gallocatechin	227	1460	999	ud	kaempferol-3-O-rutinoside	12	ud	60	253
(–)-catechin gallate	32	ud	45	115	kaempferol glycosides	250	259	43	115
(–)-gallocatechin gallate	447	375	297	271	quercetin-3-O-rhamnoside	30	116	139	633
(–)-epicatechin	2360	5800	665	2010	quercetin glycosides	150	769	198	ud
(–)-epigallocatechin	8060	17900	4910	919	myricetin-3-O-rutinoside	98	517	208	208
(–)-epicatechin gallate	1400	2350	894	823	isovitexin	45	88	ud	ud
(–)-epigallocatechin gallate	9170	14900	5380	1020	gallic acid	154	254	1330	1790
theaflavine	ud	ud	27	310	caffeine	14700	13500	11300	13900
theaflavin-3-gallate	ud	ud	26	430					
theaflavin-3'-gallate and	ud	ud	70	960					

theaflavin-3,3'-digallateb

^a Analyzed independently three times with duplicate determinations. "ud" means under the detection limit. ^b Theaflavin-3'-gallate and theaflavin-3,3'-digallate were eluted at a similar position and have the same spectrum under the present analytical conditions.

Table 5. Food Sources for Polyphenols

polyphenol classes	examples	food
simple polyphenols	chlorogenic, caffeic, ferulic, and gallic acids	widely distributed, especially in root vegetables
glycosides of flavones and flavonols	apigenin, luteolin, quercetin, kaempferol, and myricetin glycosides	mainly in leaf vegetables
aglycons of flavones and flavonols	apigenin, luteolin, and galangin	parsley, celery, broccoli, and herbs
isoflavones	genistein, daidzein, and its glycosides	soybean
flavanones	naringenin and hesperetin glycosides	citrus fruits
catechins	epigallocatechin, epigallocatechin gallate, and gallocatechin	teas and cacao bean
anthocyanins	anthocyanins	magenta colored foods (eggplant, black soybean, and blueberry)
anthraquinones	emodin, chrysophanol, and rhein	Chinese medicinal plants

quercetin aglycon. We then examined them as quercetin glycosides with the calibration curve of rutin. The sum of the amounts of the three peaks as aglycon quercetin was $117 \pm 2.3 \,\mu$ mol/100 g fresh edible part ($353 \pm 6.9 \,\text{mg}$ of quercetin/kg). The reproducibility was good, with 2.5% variance when the extraction and analysis were done independently six times. Other groups have reported the quercein content of onion to be $284-486 \, (39, 40) \text{ or } 185-634 \,\text{mg/kg} \, (41)$. The present method was considered suitable for analyzing food polyphenols.

This method was applied to burdock, which is often consumed in Japan, although little is known about its polyphenols content. Two of the detected peaks coincided with standard chlorogenic and ferulic acids in retention times and spectra, and the other major peak showed a spectrum typical for cinnamic acids (**Figure 3**). Thus, burdock contained only simple polyphenols: $178 \pm 7.7 \,\mu$ mol of chlorogenic acid, $100 \pm 4.3 \,\mu$ mol of ferulic acid, and $532 \pm 13.9 \,\mu$ mol/100 g fresh burdock as the sum total of cinnamic acid derivatives. The variance was 4.3% in six determinations.

Determination of Polyphenols in Foods. Using the present method, 59 plant foods (**Table 3**) and three kinds of teas (**Table 4**) were analyzed for polyphenol content and class. The foods were obtained from city markets, and the contents were expressed as a range of the mean when the foods were cultured in various seasons, and as the mean without a range when the foods were cultured in one season. The polyphenol contents were determined independently three times in duplicate.

Most flavonoids occurred as glycoside forms, and the most abundant aglycons were quercetin and kaempferol. Apigenin was found in parsley, celery, Indian spinach, and lemon. Luteolin occurred in celery and bell peppers. The flavanones, naringenin and hesperetin, were detected only in citrus fruits. Anthocyanins were specific to magenta-colored foods such as eggplant, blueberry, and black soybean. Aglycon forms of flavonoids were minor constituents of vegetables and fruits, whereas they have been known to occur abundantly in herbs and herb-like vegetables such as celery, parsley, peppermint, sage, oregano, and thyme (44, 45). Anthraquinones were not detected in any of the vegetables and fruits, but they are known to be contained in medicinal plants (31, 46).

Interestingly, we detected *C*-glycosides of flavonoids in large amounts in Indian spinach. Generally, the flavonoids in edible plants are *O*-glycoside forms (47). Indian spinach included 7.8–12 μ mol/100 g of apigenin-6-*C*-glucoside (vitexin) and 216–336 μ mol of apigenin-8-*C*-glucoside (isovitexin). The *C*-glycosides were found to remain unchanged after the 2 N HCl hydrolysis.

Table 4 shows the polyphenol contents of green, oolong, and black teas. Compared to the results in **Table 3**, tea leaves contained surprisingly large amounts of polyphenols, especially epicatechin (EC), epigallocatechin (EGC), and epigallocatechin gallate (EGCg). For green tea, two kinds were analyzed: gyokuro, which was shielded from strong sunlight, and sencha, which was cultivated under normal conditions. Among teas, sencha is the richest in EC, EGC, and EGCg. The contents in gyokuro were around 2 times lower, in oolong 3.5 times lower, and in black teas 18 times lower. Theaflavins, which are products of the polymerization of catechin and gallocatechin during the fermentation process (48), occurred in oolong and

black teas. These tea polyphenols were infused by $58 \pm 20\%$ (n = 6) when soaked in 15 volumes of 85 °C water (data not shown).

DISCUSSION

In the present study, we developed a method for determining all the polyphenols in vegetables, fruits, and teas at once with a HPLC system and a photodiode array detector. The method detected the natural forms in plants directly without hydrolysis and has three merits. The first is a high level of accuracy because the decomposition of polyphenols during hydrolysis is avoided, especially for unstable anthocyanins (32). The second is the ability to determine aglycons and glycosides separately, since the former differ greatly in bioavailability from the latter (49, 50). The third is the ability to obtain information on simple polyphenol contents simultaneously with other polycyclic polyphenols. Thus, the present method can determine quantitatively individual classes of polyphenols, simple polyphenols, flavones, flavonols, flavanones, catechins, isoflavones, anthocyanidins, chalcones, and anthraquinones including their glycosides.

In the pretreatment involving homogenization in liquid nitrogen, lyophilization, and extraction with 90% methanol, the recovery was 68-92%, depending on the chemicals, and the reproducibility of recovery was good, as the variation was in the range 1-9% for simple polyphenols and 2-7% for flavonoids (**Table 2**). The present recovery and reproducibility were similar to or better than those of other methods (*32*, *34*).

We then analyzed polyphenol classes and levels in vegetables and fruits (**Table 3**). The data for the glycosides were shown as micromoles of aglycon, because the molecular weight of glycoside chains was unknown. Other groups expressed the amounts as milligrams of aglycon (32-35). The results can be compared after multiplying by the molecular weight of the respective aglycon. Each datum in the present analysis was in the range of those reported by other groups. Additionally, the present analysis provided information on glycoside forms and the amounts of simple polyphenols.

In Table 5, we summarize polyphenol characteristics for foods commonly consumed on a daily basis. Root vegetables such as carrot, radish, burdock, and potato contained only simple polyphenols. Leaf vegetables such as cabbage, chive, lettuce, and spinach contained flavones and flavonols mainly in the glycoside form. Among leaf vegetables, celery and parsley are classified as herb vegetables along with peppermint, sage, oregano, and thyme (44, 45). They contain aglycon forms of flavones and flavonols at relatively high levels. These characteristics of polyphenol classes seem to depend on UV exposure, as Li et al. (51) and Lois (52) reported that plants produce flavonoids with simple polyphenols to protect against UV-B irradiation and accumulate them as glycosides. On the other hand, isoflavones occurred specifically in soybeans, flavanones in citrus, and catechins in teas and cacao. Anthocyanidins were present in magenta-colored foods such as eggplant and blueberry, and anthraquinones were probably one of the bioactive components in Chinese medicinal plants (31, 46).

The present study further demonstrates that simple polyphenols such as cinnamic and benzoic acid derivatives at relatively high levels are more widespread in plant foodstuffs than flavonoids. Hollman and Katan (53) reported that flavonoid intakes from plant-derived foods were inversely correlated with the incidence of coronary heart disease but not with cancer risk in epidemiological studies. The analysis did not include the simple polyphenol contents of plant foods. Simple polyphenols have an antioxidative potency to prevent oxidative damage to DNA bases similar to that of flavonoids (27). When the data on simple polyphenols are added to the epidemiological analysis, the results may change the correlation between intake and cancer risk.

LITERATURE CITED

- (1) Hertog, M. G. L.; Kromhout, D.; Aravanis, C.; Blackburn, H.; Buzina, R.; Fidanza, F.; Giampaoli, S.; Jansen, A.; Menotti, A.; Nedeljkovic, S.; Pekkarinen, M.; Simic, B. S.; Toshima, H.; Feskens, E. J. M.; Hollman, P. C. H.; Katan, M. B. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. *Arch. Intern. Med.* **1995**, *155*, 381– 386.
- (2) Meyer, A. S.; Heinonen, M.; Frankel, E. N. Antioxidant interactions of catechin, cyanidin, caffeic acid, quercetin, and ellagic acid on human LDL oxidation. *Food Chem.* **1998**, *61*, 71–75.
- (3) Agullo, G.; Gamet-Payrastre, L.; Manenti, S.; Viala, C.; Remesy, C.; Chap, H.; Payrastre, B. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. *Biochem. Pharmacol.* **1997**, *53*, 1649–1657.
- (4) Ashida, H.; Fukuda, I.; Yamashita, T.; Kanazawa, K. Flavones and flavonols at dietary levels inhibit a transformation of aryl hydrocarbon receptor induced by dioxin. *FEBS Lett.* **2000**, *476*, 213–217.
- (5) An, J.; Tzagarakis-Foster, C.; Scharschmidt, T. C.; Lomri, N.; Leitman, D. C. Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. *J. Biol. Chem.* **2001**, *276*, 17808–17814.
- (6) Lepley, D. M.; Pelling, J. C. Induction of p21/WAF1 and G1 cell-cycle arrest by the chemopreventive agent apigenin. *Mol. Carcinog.* **1997**, *19*, 74–82.
- (7) Xagorari, A.; Papapetropoulos, A.; Mauromatis, A.; Economou, M.; Fotsis, T.; Roussos, C. Luteolin inhibits an endotoxinstimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. *J. Pharmacol. Exp. Ther.* 2001, 296, 181–187.
- (8) Bhatia, N.; Agarwal, R. Detrimental effect of cancer preventive phytochemicals silymarin, genistein and epigallocatechin 3-gallate on epigenetic events in human prostate carcinoma DU145 cells. *Prostate* 2001, *46*, 98–107.
- (9) Frey, R. S.; Li, J.; Singletary, K. W. Effects of genistein on cell proliferation and cell cycle arrest in nonneoplastic human mammary epithelial cells: involvement of Cdc2, p21(waf/cip1), p27(kip1), and Cdc2C expression. *Biochem. Pharmacol.* 2001, *61*, 979–989.
- (10) Nagasaka, Y.; Nakamura, K. Modulation of the heat-induced activation of mitogen-activated protein (MAP) kinase by quercetin. *Biochem. Pharamcol.* **1998**, *56*, 1151–1155.
- (11) Kobuchi, H.; Roy, S.; Sen, C. K.; Nguyen, H. G.; Packer, L. Quercetin inhibits inducible ICAM-1 expression in human endothelial cells through the JNK pathway. *Am. J. Physiol.* **1999**, 277, C403–C411.
- (12) Williamson, G.; Plumb, G. W.; Uda, Y.; Price, K. R.; Rhodes, M. J. C. Dietary quercetin glycosides: antioxidant activity and induction of the anticarcinogenic phase II marker enzyme quinone reductase in Hepalclc7 cells. *Carcinogenesis* 1996, 17, 2385–2387.
- (13) Soriani, M.; Rice-Evans, C.; Tyrrell, R. M. Modulation of the UV-A activation of haem oxygenase, collagenase and cyclooxygenase gene expression by epigallocatechin in human skin cells. *FEBS Lett.* **1998**, *439*, 253–257.
- (14) Wadsworth, T. L.; Koop, D. R. Effects of the wine popyhenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. *Biochem. Pharmacol.* 1999, 57, 941–949.

- (15) Liang, Y.-C.; Tsai, S.-H.; Tsai, D.-C.; Lin-Shiau, S.-Y.; Lin, J.-K. Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor-gamma by flavonoids in mouse macrophages. *FEBS Lett.* 2001, 496, 12–18.
- (16) Verma, A. K.; Johnson, J. A.; Gould, M. N.; Tanner, M. A. Inhibition of 7,12-dimethylbenz(a)anthracene- and N-nitrosomethylurea-induced rat mammary cancer by dietary flavonol quercetin. *Cancer Res.* **1988**, *48*, 5754–5758.
- (17) Wei, H.; Tye, L.; Bresnick, E.; Birt, D. F. Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. *Cancer Res.* **1990**, *50*, 0, 499–502.
- (18) Tanaka, T.; Kojima, T.; Kawamori, T.; Wang, A.; Suzui, M.; Okamoto, K.; Mori, H. Inhibition of 4-nitroquinoline-1-oxideinduced rat tongue carcinogenesis by the naturally occurring plant phenolics caffeine, ellagic, chlorogenic and ferulic acids. *Carcinogenesis* **1993**, *14*, 1321–1325.
- (19) Han, B. S.; Park, C. B.; Takasuka, N.; Naito, A.; Sekine, K.; Nomura, E.; Taniguchi, H.; Tsuno, T.; Tsuda, H. A ferulic acid derivative, ethyl 3-(4'-geranyloxy-3-methoxyphenyl)-2-propenoate, as a new candidate chemopreventive agent for colon carcinogenesis in the rat. *Jpn. J. Cancer Res.* **2001**, *92*, 404– 409.
- (20) Yang, C. S.; Landau, J. M.; Huang, M. T.; Newmark, H. L. Inhibition of carcinogenesis by dietary polyphenolic compounds. *Annu. Rev. Nutr.* 2001, 21, 381–406.
- (21) Ricupero, D. A.; Poliks, C. F.; Rishikof, D. C.; Kuang, P.-P.; Goldstein, R. H. Apigenin decreases expression of the myofibroblast phenotype. *FEBS Lett.* **2001**, *506*, 15–21.
- (22) Duffy, S. J.; Keaney, J. F.; Holbrook, M.; Gokce, N.; Swerdloff, P. L.; Frei, B.; Vita, J. A. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. *Circulation* 2001, 104, 151– 156.
- (23) Yamada, K.; Shoji, K.; Mori, M.; Ueyama, T.; Matsuo, N.; Oka, S.; Nishiyama, K.; Sugano, M. Structure–activity relationship of polyphenols on inhibition of chemical mediator release from rat peritoneal exudates cells. *In Vitro Cell. Dev. Biol.* **1999**, *35*, 169–174.
- (24) Herrmann, K. Flavonols and flavones in food plants: a review. *J. Food Technol.* **1976**, *11*, 433–448.
- (25) Wollenweber, E.; Dietz, V. H. Occurrence and distribution of free flavonoid aglycones in plants. *Phytochemistry* **1981**, 20, 869–932.
- (26) Bors, W.; Heller, W.; Michel, C.; Saran, M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. *Methods Enzymol.* **1990**, *186*, 343–355.
- (27) Sakakibara, H.; Ashida, H.; Kanazawa, K. A novel method using 8-hydroperoxy-2'-deoxyguanosine formation for evaluating antioxidative potency. *Free Radical Res.* 2002, *36*, 307– 316.
- (28) Kanazawa, K.; Yamashita, T.; Ashida, H.; Danno, G. Antimutagenicity of flavones and flavonols to heterocyclic amines by specific and strong inhibition of the cytochrome P450 1A family. *Biosci. Biotechnol. Biochem.* **1998**, *62*, 970–977.
- (29) Ferte, J.; Kuhnel, J. M.; Chapuis, G.; Rolland, Y.; Lewin, G.; Schwaller, M. A. Flavonoid-related modulators of multidrug resistance: synthesis, pharmacological activity, and structure– activity relationships. J. Med. Chem. 1999, 42, 478– 489.
- (30) Casagrande, F.; Darbon, J. M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1. *Biochem. Pharmacol.* 2001, *61*, 1205–1215.
- (31) Sun, M.; Sakakibara, H.; Ashida, H.; Danno, G.; Kanazawa, K. Cytochrome P4501A1-inhibitory action of antimutagenic anthraquinones in medicinal plants and the structure–activity relationships. *Biosci. Biotechnol. Biochem.* 2000, 64, 1373– 1378.

- (32) Hertog, M. G. L.; Hollman, P. C. H.; Venema, D. P. Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. *J. Agric. Food Chem.* **1992**, *40* 1591–1598.
- (33) Crozier, A.; Jensen, E.; Lean, M. E. J.; McDonald, M. S. Quantitative analysis of flavonoids by reversed-phase highperformance liquid chromatography. J. Chromatogr. A 1997, 761, 315–321.
- (34) Häkkinen, S. H.; Kärenlampi, S. O.; Heinonen, I. M.; Mykkänen, H. M.; Törrönen, A. R. HPLC method for screening of flavonoids and phenolic acid in berries. *J. Sci. Food Agric*. **1998**, 77, 543– 551.
- (35) Merken, H. M.; Beecher, G. R. Liquid chromatographic method for the separation and quantification of prominent flavonoid aglycones. J. Chromatogr. A 2000, 897, 177–184.
- (36) Schieber, A.; Keller, P.; Carle, R. Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography. J. Chromatogr. A 2001, 910, 265– 273.
- (37) Robards, K.; Antolovich, M. Analytical chemistry of fruit bioflavonoids. *Analyst* 1997, 122, 11R-34R.
- (38) Herrmann, K. On the occurrence of flavonol and flavone glycosides in vegetables. Z. Lebensm. Unters Forsch. 1988, 186, 1-5.
- (39) Hertog, M. G. L.; Hollman, P. C. H.; Venema, D. P. Content of potentially anticarcinogenic flavonoid of 28 vegetables and 9 fruits commonly consumed in the Netherlands. *J. Agric. Food Chem.* **1992**, *40*, 2379–2383.
- (40) Tsushida, T.; Suzuki, M. Content of flavonol glucosides and some properties of enzymes metabolizing the glucosides in onion. *Jpn. Food Sci. Technol.* **1996**, *43*, 642–649.
- (41) Crozier, A.; Lean, M. E.; McDonald, M. S.; Black, C. Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery. *J. Agric. Food Chem.* **1997**, *45*, 590– 595.
- (42) Justesen, U.; Knuthsen, P.; Leth, T. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. J. Chromatogr. A 1998, 799, 101–110.
- (43) Teyssier, C.; Amiot, M. J.; Mondy, N.; Auger, J.; Kahane, R.; Siess, M. H. Effect of onion consumption by rats on hepatic drug-metabolizing enzymes. *Food Chem. Toxicol.* 2001, *39*, 981–987.
- (44) Kanazawa, K.; Kawasaki, H.; Samejima, K.; Ashida, H.; Danno, G. Specific desmutagens (antimutagens) in oregano against a dietary carcinogen, Trp-P-2, are galangin and quercetin. *J. Agric. Food Chem.* **1995**, *43*, 404–409.
- (45) Samejima, K.; Kanazawa, K.; Ashida, H.; Danno, G. Luteolin: a strong antimutagens against dietary carcinogen, Trp-P-2, in peppermint, sage, and thyme. J. Agric. Food Chem. 1995, 43, 410–414.
- (46) Lee, H.; Tsai, S.-J. Effect of emodin on cooked-food mutagen activation. *Food Chem. Toxicol.* **1991**, *29*, 765–770.
- (47) Markham, K. R. Hydrolysis and the analysis of glycosides. In *Techniques of Flavonoid Identification*; Markham, K. R., Ed.; Academic Press: New York, 1982; pp 52–61.
- (48) Owuor, P. O.; Obanda, M. The changes in black tea quality due to variations of plucking standard and fermentation time. *Food Chem.* **1998**, *61*, 435–441.
- (49) Hollman, P. C. H.; Katan, M. B. Absorption, metabolism and health effects of dietary flavonoids in man. *Biomed. Pharmacother.* **1997**, *51*, 305–310.
- (50) Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000, 130, 2073S-2085S.
- (51) Li, J.; Ou-Lee, T.-M.; Raba, R. R.; Amundson, R. G.; Last, R. Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. *Plant Cell* **1993**, *5*, 171–179.

Analysis of Vegetable Polyphenols

- (52) Lois, R. Accumulation of UV-absorbing flavonoids induced by UV-B radiation in *Arabidopsis thanliana* L. *Planta* 1994, 194, 498–503.
- (53) Hollman, P. C. H.; Katan, M. B. Dietary flavonoids: intake, health effects and bioavailability. *Food Chem. Toxicol.* **1999**, 37, 937–942.

Received for review September 3, 2002. Revised manuscript received October 30, 2002. Accepted October 31, 2002. This study was performed with Special Coordination Funds of the Ministry of Education, Culture, Sports, Science and Technology, the Japanese Government.

JF020926L